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1.  INTRODUCTION 
In  addition to the enormous aerodynamical literature concerned with 

the disturbances to a uniform stream produced by the presence of obstacles, 
there is a very extensive literature on disturbances to irrotational non- 
uniform streams. The smaller body of work on disturbances to rotational 
streams is concerned principally with two-dimensional disturbances to a 
parallel shear flow ; these are fairly easy to treat because the vortex lines 
are straight ; they remain parallel and do not get stretched at all during the 
motion. 

By contrast, in flows where the disturbances are three-dimensional in 
character (even though the undisturbed stream may still be two-dimensional), 
stretching and rotation of the vortex lines must play an important part. 
I n  spite of the difficulties which this introduces, certain outstanding papers 
on the theory of these flows have appeared. 

Squire (1933) found the equation governing small three-dimensional 
disturbances to a two-dimensional parallel flow. If the velocity field is 

F.M. 
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then by neglecting squares of the disturbance velocities u, a, w and analysing 
them into Fourier components, he showed that disturbances varying 
with x and x like ei(uz+8z) must vary with time like e-iact, where c is such that 
the equation 

( V -  c){v" - (az + flZ)a) - V"v - (v/ia){d" - 2(a2 + f12)v" + (a2 + flZ)>"a} = 0 (2) 
(where v is kinematic viscosity and where primes signify differentiation 
with respect to y )  is satisfied (together with boundary conditions) by a 
non-vanishing value of the y-velocity a. Values of c with negative imaginary 
part correspond to stable disturbances, values with positive imaginary part to 
unstable disturbances, and real values to neutral disturbances. Equation (2) 
shows that neutral disturbances with /3 = Po # 0, a = ao, Y = vo can exist, 
if and only if neutral disturbances with 

/3 = 0, a = d(ag+ Pi), 
exist ; the latter are two-dimensional disturbances at a lower Reynolds 
number". Squire deduced the classical theorem that two-dimensional 
disturbances become unstable at a lower Reynolds number than three- 
dimensional disturbances. 

KQrmAn & Tsien (1945) investigated small disturbances to a three- 
dimensional parallel stream (so that V in (1) is a function of z as well as 
of y) but limited themselves (as we shall do in this paper) to steady 
disturbances with viscosity neglected, evolving the theory of the ' lifting 
line ' in such a non-uniform stream. They found it convenient to work 
from the equation for the pressure p, namely 

v = voz / (  1 + /3i/ag) 

both because it in this case is simpler than that for any of the velocity 
components, and because the boundary condition in the lifting-line problem 
is expressed most conveniently in terms of p .  The results of the lifting-line 
theory are complicated, however, and only in the case when F' is a function 
of y alone (the spanwise coordinate) do they become reasonably tractable. 

Another approach to the study of steady three-dimensional disturbances 
to a parallel shear flow has been to regard them as a ' secondary flow ', to be 
analysed by the method initiated by Squire & Winter (1951). I n  this 
method there is no assumption that the disturbances are small ; for example, 
the disturbance due to a sphere can be treated (Hawthorne & Martin 1955 ; 
Lighthill 19%). There is, however, an assumption that the undisturbed 
stream is weakly sheared. The ' primary flow,' (or first approximation to 
the real flow) is taken to coincide (either wholly, or at least as regards its 
streamline pattern) with that in which the undisturbed stream is uniform. 
The secondary flow is a perturbation on this, due to allowing a small shear 
in the undisturbed stream. This shear is usually taken to be uniform, 
although such an assumption is not essential to the method ; we shall call 
secondary flows calculated on this assumption ' simple-shear secondary 
flows'. The secondary vorticity can be calculated either direct from 

* Equation (2) with /3 = 0 is the Orr-Sommerfeld equation. 
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Helmholtz’s equations (Hawthorne 195 1, 1954), or by geometrical con- 
siderations (Preston 1954; Lighthill 1956) from the effect of the primary 
flow in stretching and rotating the vortex lines of the undisturbed shear flow. 
(From this point of view, the approximation adopted consists in neglecting 
the fact that it is really the exact flow, not the approximate ‘ primary flow ’, 
which carries the vortex lines alongwith it.) The calculation of the secondary 
velocity field from the associated vorticity field is more arduous, but can be 
achieved in special cases (Lighthill 1956, 1957 b). 

The work of this paper originated from a desire to clear up a difficulty 
arising in the application of the secondary-flow method to cases where the 
undisturbed stream is unbounded. The difficulty is that the secondary-flow 
disturbance due to the presence of an obstacle falls off more slowly with 
distance from it than does the primary-flow disturbance. For example, 
a ‘half-body’ extending from the origin to infinity downstream has a 
primary-flow disturbance of ‘source’ type, falling off like r2 (where Y is 
distance from the origin), but the corresponding secondary-flow disturbance 
falls off like r-l. If the procedure of successive approximation were 
continued, and a tertiary-flow field calculated from the configuration of 
vortex lines as distorted by the sum of the primary and secondary flows, 
this would not even tend to zero as r + co. 

As another example, a finite body makes a primary-flow disturbance of 
‘ doublet ’ type, falling off like r3, but the corresponding secondary-flow 
disturbance falls off like r2 (see Lighthill (1956), where also a not quite 
accurate attempt was made to calculate the tertiary flow, but the conclusion 
that it falls off like r1 was right). 

Now, there is no experimental evidence (e.g. from the flow visualizations 
reported by Livesey (1956)) that secondary flows are large far from the 
obstacle, and it seems clear that, as suggested in Lighthill (1956), the 
approximation sequence is not uniformly valid in this region, where 
(therefore) the first term gives no indication of the real behaviour of the 
disturbance. 

There is some analogy in this to the difficulties concerning flow about an 
obstacle at very low Reynolds numbers, often described as ‘ Stokes’s and 
Whitehead‘s paradoxes ’. In  those problems a direct procedure of expansion 
in powers of Reynolds number gives nonsensical results, at any rate far from 
the obstacle (although for three-dimensional obstacles the first term in the 
expansion has value near the obstacle). The difficulty was resolved by 
Oseen, who showed that the correct form of the equations of motion at large 
distances is that obtained by neglecting squares of disturbances to the 
uniform stream but not discarding terms of lower order in the Reynolds 
number. 

Similarly in the present problem the true behaviour of the flow far 
from the body is found from the full equations with the squares of the 
disturbances neglected. Such an approach is obviously valid sufficiently 
far from the obstacle, and the only problem is how the results obtained 
should be related to secondary-flow and other results obtained by the 
methods described above. 

H2 
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The answer found below is that the small-disturbance solution is valid 
in a region, far from the obstacle, which overlaps the region, near the 
obstacle, where the small-shear solution (more accurately, the ‘ simple-shear 
secondary flow’) is valid. This overlapping holds in the sense that the 
asymptotic behaviour of the small-disturbance solution as one goes near 
the obstacle is identical with the asymptotic behaviour of the small-shear 
solution as one goes away from the obstacle. The overlap makes it possible 
to say how the flow behaves everywhere. 

These are good reasons for studying small steady three-dimensional 
$disturbances to a parallel shear flow. Obviously, however, there are many 
others: to investigate, for example, the flow of sheared winds over hills. 
Again, one could follow up the work of KBrman & Tsien (1945) by studying 
further kinds of perturbation of parallel shear flows by thin shapes of 
aerodynamic interest. 

As a basic tool for any such investigation, we seek in this paper the 
“fundamental solution’ of the equation. This represents the flow due to 
.a source (but a weak source, since our equation treats only small disturbances) 
i n  a parallel shear flow. This solution will give as it stands the asymptotic 
behaviour of the disturbances due to  a ‘ half-body ’, since these are equivalent 
far from the body to those produced by a source. Also, a simple differentiation 
of the solution will give the disturbance due to a doublet, which will represent 
the asymptotic behaviour of the disturbances due to a finite body. Finally, 
more complicated solutions of the equations can be built up (on familiar 
lines) once the fundamental solutions for a source and a doublet are known ; 
work on these lines, however, is excluded from the present paper. 

We limit ourselves (like Squire 1933) to the case when the undisturbed 
flow is two-dimensional, its velocity field being (V(y),  0,O). The formal 
theory for the undisturbed velocity field (V(y ,  x), 0,O) (used by KBrmBn 
& Tsien 1945) can be derived, but so much extra effort is then needed to 
deduce any concrete results (as indeed they also found) that it is better to 
try to keep the theory intelligible by confining discussion to the simpler 
case. In  this case the equation, after Fourier transform with respect to x 

the disturbances are steady). There are, of course, no continuous solutions 
of this equation which satisfy the appropriate boundary conditions (such 
solutions exist only for one value of c, which in practice is non-zero) ; on 
the other hand, to represent a source (say, at the origin), one needs a solution 
with a discontinuity of a certain specified kind at y = 0. This solution is 
the Fourier transform of the required disturbance field, which must be 
deduced from it by Fourier’s inversion theorem. 

The Orr-Sommerfeld equation has in the past been used almost 
exclusively for studying harmonic disturbances. The building up of 
anharmonic disturbance fields by Fourier synthesis from solutions of that 
equation, as in this paper and the author’s previous paper on boundary 
layers and upstream influence in supersonic flow (Lighthill 1953), is an 
approach that seems fruitful and may have a number of applications. 

and x have been taken, becomes Squire’s equation (2) 4- ith c = 0 (because 
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In  the present paper the viscous terms in the equation are neglected. 
This is known to be permissible except where V(y )  is near the ‘critical’ 
values 0 and c, which coincide in the case here studied. Thus, shear layers 
in which the undisturbed velocity falls to zero anywhere are excluded in 
this paper as a result of the neglect of the viscous terms ; such shear layers 
include boundary layers and jets. Boundary layers could be treated, 
provided that the viscous terms in the equation were retained in some 
‘ inner viscous layer ’ near the wall, as used by Lighthill (1953) to provide 
a corrected form of boundary condition for the non-viscous equation. 
However, in a preliminary survey this refinement was thought to be not 
worth making, particularly since laminar boundary layers when disturbed 
are so prone to large disturbances associated with separation. With jets, 
again, the assumption of parallel or even nearly parallel flow at the edge, 
where air is being entrained, is wrong. Accordingly, the theory as set out 
here is limited to a wake, or a mixing region between parallel streams, or 
any other layer in which V ( y )  is nowhere zero. 

Since steady inviscid flow is being considered the Khrm6n-Tsien 
equation (3)  could have been used. However, equation (2) for G (with 
v = c = 0), although no simpler than equation (3) for p ,  has advantages 
in the present problem, in which ZI (but not p )  turns out to be a function 
of y and of s = 1 / ( x 2 + z 2 )  alone, and in which the velocity components, 
rather than the pressure, are the main things one wants to know. 

Of the results of the theory, four main classes may be mentioned in 
advance. First, if the solution is expanded in ascending powers of r (distance 
from the source), the first term (of order r -2) is the primary flow (the source 
flow itself) and the second (of order rl) is the small-disturbance approxi- 
mation to the simple-shear secondary flow (as already mentioned) and 
depends only on V(0) and V’(O), the velocity and shear at the origin, 
However, the ne term (which might be called the small-disturbance 
form of the ‘ terti ry  flow ’) depends on the velocity distribution throughout 
the shear layer. 

Another result of general interest is concerned with the behaviour of the 
solution for large r :  a source in a shear layer produces in any region of 
uniform flow outside the shear layer a disturbance equivalent to a source of 
different strength in a different position. The strength of the equivalent 
source can alternatively be predicted by simpler arguments (due to. 
Mr M. B. Glauert), in which the shear layer is regarded as a discontinuity 
between regions of uniform flow. The displacement in effective position 
is of the order of the layer width, and has not yet been predicted by such 
simpler arguments. 

A third result is that in shear layers with small velocity spread (that is, 
a velocity minimum only a few per cent less than the velocity maximum) 
a specially simple form of solution is available ; this can be given an elegant 
interpretation by means of images, again due to Mr M. B. Glauert. I t  can 
also be shown to be identical with the asymptotic form of the ‘ exact-profile 
secondary flow’, that is, of the secondary flow calculated by allowing the 

(* 
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vortex lines of the exact undisturbed-flow profile V(y)  (not the corresponding 
simple-shear profile V(O)+ V'(0)y) to be stretched and rotated by the 
primary flow. 

Lastly, the theory is applied to the problem of the displacement of the 
dividing streamline in shear flows about axisymmetrical obstacles-a 
problem which the author has used in a number of recent papers, both as 
a convenient excuse for developing techniques for calculating shear flows, 
and as a point where theory could easily be referred to the results of 
experiments. In  the last section of this paper it is shown what corrections 
need to be made, to values of this displacement as calculated from simple- 
shear secondary-flow theory, to take into account the improved picture of 
what the disturbances are like far from the obstacle. 

2. EQUATIONS OF MOTION 

The momentum equation for steady incompressible inviscid flow is 
1 
P 

v.vv+ -vp = 0, (4) 

where v is the velocity, p the density and p the pressure. If the departure 
from two-dimensional parallel flow is small, so that 

v =  (V(y)+u,v,w), (5) 
where squares and products of u, v,  w 
neglected, equation (4) becomes 

and their derivatives are to be 

We shall assume that all disturbances vanish far upstream (at x = - a), 
:so that (7) and (S), with the pressure eliminated, give 

av 
ax -dx  = V(y)-. 

a 
- (V(y)w} = - - 
aY 

Elimination of p from (6) and (7) gives, similarly, 

(9) 

These equations are to be satisfied together with the equation of 
continuity. Now,, to obtain the ' fundamental solution', due to a source 
of strength m at the origin, from which other solutions can be built up, we 
write that equation as 
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where S(x) is the delta function of Dirac, or ' impulse function ' ; thus, 
the right-hand side of (11) vanishes except at the origin, but its integral 
over any volume including the origin is m. No similar term appears on the 
right-hand side of (6), (7) or (8) because the source is taken to be a source 
of mass but not of momentum. 

To obtain an equation for the single variable v ,  we first multiply (11) 
by V(y), giving 

(12) 
au av aw 

UY) + V(Y> 5 + YY) = mwv(x)~(Y)S(4  

(where the general theorem f(y)S(y) = f(O)&(y) has been used), and then 
we differentiate (12) with respect to y, using (9) and (lo), to obtain 

or V(y)V2u - V"(y)v = mV(O)&(x)S'(y)S(z). (14) 
Equation (14) for z, is the basic equation of motion. After it has been 

solved, w and u may easily be deduced, from (9) in the form 

and from the equation of continuity (1 l).. The choice of lower limit in (15) 
arises from the condition that the disturbance vanish at y = t- 00, but 
meither limit gives the same answer. This is because 

J" ~ ( y ) v  dy = 0. 

y =  - 0 3  t o y =  + m .  This shows T hat the left-hand side of (16) is a 

(16) -" 
To prove (16) (which is a useful check on the accuracy of solutions, and has 
been applied as such to all those n in this paper), integrate (13) from 

harmonic function of the two variables x and z for all values of those 
variables; but it vanishes at infinity, and so must be zero everywhere. 

To obtain u, on the other hand, one must integrate the equation of 
continuity with respect to x from - co (not + co) to x, since it is possible 
that fluid at x = + co, whose vorticity may have been permanently re- 
distributed when it passed the source, may have non-zero disturbance 
velocity. 

It is possible that the solution of the basic equation (14), for given V(y), 
could be obtained by some sort of ' analogue method'. Thus, the equation 
can be written 

V2(y)grad - = mV(O)S(x)&'(y)S(z), (17) 
V(Y) " 1  

which shows that v/V(y) is proportional to the electrostatic potential of a 
dipole at the origin, with axis they-axis, in a stratified medium with dielectric 
constant proportional to V2(y). Many similar analogies are, of course, 
possible, and some might, perhaps, be useful in giving intuitive information 
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about the solution, or an experimental procedure for computing it. T h e  
author has not so far been able to make such use of them, and in the meantime 
offers an analytical method of solution. 

It may also be noted that the theory can be at once extended to problems 
with density stratification, in which the undisturbed flow has its density p(y)  
as well as its velocity (V(y ) ,  0,O) dependent on y ; however, this extension 
is straightforward only if gravity is still negligible-thus, the variable inertia 
of the fluid, but not the variable weight, can easily be taken into account. 
The equation which results in this case, corresponding to (17), is 

= mV(O)S(x>S‘(y)S(x), 

so that the expression for v / V ( y )  may be derived from its expression for 
constant p by simply replacing V ( y )  in the latter expression by 

Unfortunately this result is not of much value because in problems with 
density stratification the variable buoyancy of the fluid is usually important 
(or else the Mach number is not negligible). One may hope that the theory 
can later be extended to take the gravitational term into account, but this. 
would require a new investigation. 

To  solve equation (14) it is usually convenient to divide it by V ( y ) ,  

V(Y ) d M Y  ) /P(O) I *  

giving 

v2v- - (192 

where the form of the right-hand side follows from the general theorem 

f(Y)S’(Y) = .f(O)S’(Y) -f’(O)~(Y). 
One next writes v as a Fourier integral 

J - m  J - m  

Then, by substitution in (19), 

where all primes signify differentiation with respect to y .  
Apart from the delta functions on the right-hand side, representing the 

effect of the source, equation (21) is the same as Squire’s equation (Z), 
with c and v put equal to 0. The fact that u and /3 appear only in the 
combination 

$ + p 2  = K“ (222 

x2 + 9 = s2. (23) 

is again important. It. follows from it that w itself depends only on y and on 

For if we substitute 

ac = kcos8, = ksin8, x = S C O S ~ ,  a = ssinh (24) 
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then, since dudp = KdkdB, we obtain 

12 1 

in (20), 

.m 

= 27r J vokJ0(ks) dk. 
0 

Thus v, a function of y and s alone, is the ' Hankel transform' (25) of vo, 
a function of y and k alone. 

This vo is to be obtained from (21), which states that for y > 0 and 
y < 0 the simple equation 

v;I-vo (k2+ ;) = 0 

is satisfied by v,,, but that vo and vh are discontinuous at y = 0, in such 
a wav that 

(27), 
m rn V'(0) 

4rr2, v;(+o)-v;(-o) = - - 4772 V(0) * vO(+O)-vO(-O) = - 

The problem has thus been reduced to terms not involving any generalized 
functions. 

3. SIMPLE SOLUTIONS FOR TWO PARTICULAR CASES 

There are two particular, although somewhat artificial, distributions V ( y )  
of the undisturbed velocity for which very simple solutions exist. First, if 

V(y) = u+ Ay, (28) 

.;I - k2vo = 0, (29) 

so that the oncoming flow is uniformly sheared, then (26) becomes 

and the solution of (29) which tends to zero as IyI -+ co and satisfies (27) is 

where sgny is + 1 when y > 0 and - 1 when y < 0. 
(Watson 1944, 0 13.2 (1)) 

By the result 

and its derivative with respect to y, equations (30) and (25) give 

where r = 2/(y2 + 3) = d ( x 2  +yz + z2). That the coefficient of V'(O)/V(O) 
must be simply the potential of a source of strength m is independently 
obvious from equation (19) when the second term therein vanishes; 
similarly, the other term must be the y-derivative of the source potential 
( - m/4m).  
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The first term in (32) is the ‘primary’ flow due to the source, and the 
second term is the small-disturbance approximation to the simple-shear 
secondary flow (Lighthill 1957a). The full secondary flow in the simple- 
shear case (28) is the solution obtained by assuming not small source strength 
but small shear; it is a perturbation on the irrotational flow due to the 
source, derived by neglecting the square of the shear ; at a large distance 
from the source, where the disturbance to the oncoming stream is also 
small, it takes the form shown in (32). What is interesting in (32) is that 
no higher powers of the shear (representing tertiary, quartary flows, etc.) 
appear, although in the present analysis these have not been neglected. 
It is, as we shall see, only for the particular, and artificial, undisturbed 
velocity distribution (28) that this is so: 

By (32) and (15). with Moreover, such terms are not absent in w. 
Y =  U+Ay, 

which after an integration by parts gives 

(34) 
mz A2 mz w = - -  

4rr3 U(U+Ay) G’ 
of which the last term is a tertiary-flow term. More seriously, this term 
makes the integration of the equation of continuity to obtain u impossible 
without allowing u to become logarithmically infinite at both x = + 03 

.and x = - CQ. This is an extremely discouraging feature of the present 
solution. However, it is related to the circumstance that V(y)  actually 
becomes zero for finite y ,  and we shall see that for more realistic velocity 
distributions the difficulty does not arise. 

There is one other V(y), not specially realistic, but at least not leading 
to unrealistic infinities, for which a simple solution is possible. This is 

Again, the solution is most readily obtained from equation (19), which in 
this case becomes 

V(y)  = Ue”. (35) 

V2v-Pv = (; +A)ms(x)s(y)s(z), (36) 

whence 
ZI =- ($ +A)[ - GI, (37) 

the term in square brackets being the fundamental solution of V2v = A2w. 
Alternatively, (37) can be obtained by first solving (26) and then making 
use of the result (Watson 1944, 13.47 (2) with p = 0, v = &) 

The modification of the primary- and secondary-flow terms in (37) by 
the exponential factor inside the square bracket means that tertiary-flow 
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terms in h2 and higher-order terms are present in v in this case, but that they 
all add up to a solution tending to zero rapidly as r +  00. As to w, 
equation (15) with (37) gives simply 

and for u the equation of continuity yields after some reduction 

(39) 

Thus there is an exponential falling-off as r +  m in u also, except as 
x-+ + co for values of y and ,z which are not large. This last result is 
realistic, and corresponds to the fact that fluid which has passed close to 
the source has been permanently affected, because its vortex lines have been 
deformed. In fact, 

= @(a 4.rr ay +A)2Ko{hd(3.2+z2)}, 

by Watson (1944), $6.22 ( 5 ) .  All the outflow due to the source has somehow 
been channelled into the region immediately downstream of it*. That the 
total volume flow in the x-direction in this region is in fact m is easily verified 
from (41) ; we obtain 

m Im (lim u) dydx = m 1 tKo( t )  dt = m, (42) 
- -m x + + m  0 

by Watson(1944), $ 13.21 (8). The solution, however, is not worth pursuing 
further because of the impossibility that in a real flow the velocity distribution 
could be well represented by (35) over any large range of y. 

4. METHOD OF SOLUTION IN THE GENERAL CASE 

We pass to methods applicable for a general distribution of velocity V(y) ,  
subject only to the restriction that the limits V( m) and V( - m) exist, and 
that V(y)  is nowhere zero, even at these limits. (We shall also require V(y)  
to tend to these limits sufficiently fast for certain integrals to converge.) 
Thus, the parallel flow is supposed to become uniform as y -+ + co and as 
y -+ - m, as in a wake or in a mixing region between two streams. 

The equation (26) as y -+ + 00 tends to the simple form (29) and has 
solutions e--kV and ekv. Only the former tends to zero and so is of interest 
to us. We therefore introduce the notation v,(y, K) for the solution of (26) 
which is asymptotic to r k y  as y -+ + 00. Similarly, vZ(y,K) signifies the 

* We shall see that this is due to the displacement of streamlines, as they pass 
she source, towards the region of lower undisturbed velocity. 
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solution which is asymptotic to ekg as y +- - 00. 

continuous solution vo must take the form 

for some constants A and B. But, by (27), 

The necessary dis- 

0 0  = A(k)v,(y,k) (Y > 01, B(k)%(Y,k) (Y < O), (43), 

(44) 
m 

47r2 ’ A(k)v,(O, k) - B(k)v,(O, k) = - 

m V ( 0 )  
A(K)v;(O, k) - B(k)VH(O, k) = - - 

47r2 V(0) ’ 
and the solution of these simultaneous equations is 

m 

m 

where 
is independent of y by a well-known property of second-order linear 
differential equations (and it is actually (47) for y = 0 that has been used 
to derive (46)). 

Equation (46) would be useless if the Wronskian W(k) vanished. 
However, this cannot happen. For it would mean that v1 and v2 were 
simply proportional to one another, so that a continuous (and continuously 
differentiable) solution vo existed tending to zero at y = 5 co. Physically, 
a stationary wave could then be present without the need for any extraneous 
disturbance like the source here discussed. This state of affairs is not at 
all plausible ; but the possibility can be dismissed altogether on mathematical 
grounds, since if such a vo existed, it may be shown from the differential 
equation (26) that 

W ( k )  = %(Y, +H(Y, 4 - V,(Y, k ) 4 ( Y ,  k) (471, 

so that v,, must vanish identically (because otherwise the left-hand side 
would be positive). 

The character of the solution v,(y,k) (and its sister solution v2(y,k)),  
on which all has been made to depend, will be sufficiently uncovered in 
what follows by three theories, one for large k, one for small k, and one 
for general k subject to the restriction that the total variation of V(y )  is. 
small compared with its absolute magnitude. In each case the corresponding 
properties of vo(y, k), v(y, s), u and w are inferred from the above formulas. 
and those of $2. 

5 .  THEORY FOR SMALL r 
By properties of the Hankel transformation (25) we shall be able to- 

deduce the behaviour of v for small r from the behaviour of vo for large k.. 
T o  study the latter we solve equation (26) in the form 
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by ' variation of parameters '. Picking the solution v1 asymptotic to c k y  

.as y + + co, we obtain 

This integral equation is useful for many purposes, in particular for proving 
by Picard's well-known method the existence and uniqueness of vl(y,  k ) ,  
.and its analyticity as a function of k for 3 { K }  2 0. It also tells us the 
,expansion of vl(y,k) for large k, giving to a first approximation 
v1 eku = 1 + O(kl)  and to a second 

Similarly, v2 = ek l ( l  + I Qdq+ O($)}, 2k - - m  V(P) 
.and so the Wronskian of v1 and v2 is 

its independence of y being a check on the work. Hence, by (46), 

m -- (53) 

.and similarly 

whence by (43), (50) and (51) 

The author has evaluated also the coefficient of k2 in the expansion of 
q,(y,K) for large k, but the only property of this coefficient that tells us 
anything about the behaviour of v for small r is that it is O( Iyl) as Iy1+ 0 ; 
the next term still is one in k3. Hence, writing F(y, k) for the error term 
in (55), we have by (25) and (31) 

+ 2 e k ~ ~ ~ J , , ( h ) F ( y ,  l z )  dk, (56) 
477 0 

with 



126 M .  J .  Lighthill 

for some C, and C2. The integral in (56) is therefore bounded as Y += 0; 
it is less in modulus than 

QI e-klyl dk dk 
cl'Y' I, l+k +q-, (iT7p 

which is bounded, because the first integral is O(loglyl-l). (Actually, the 

integral in (56) tends to a finite limit F(0, k) dk as r -+ 0. However, this 

limit cannot be evaluated unless vo(O,k) is known for all k.) Part of the 
middle term in (56) is also bounded, and so finally 

m 

0 

my vl(0) m 
4Xr3 V(0) 4rr 

v = - - - -  +0(1) as r+O.  (57) 

Equation (57) shows that the part of v which tends to infinity as Y -+ 0 
consists simply of the primary flow and the simple-shear secondary flow. 
In  other words, near the source the variations of velocity and of shear are 
small enough for the approximations of neglecting the square of the shear 
and regarding it as uniform to give the right answer. 

It follows from (57) and (15) that 

w = ;( - G ) + O ( l ) ;  

this also is the sum of the primary flow and the simple-shear secondary 
flow, since the latter has no x-component if the squares of the disturbances 
are neglected. Finally, the equation of continuity gives 

= &( - $)- iG yo v(0) y-2 (1+ ;)+o(l), (59) 

the second term being obtained by integrating y/r3 with respect to .1c from 
the lower limit - m ;  again, this second term agrees with the small- 
disturbance approximation to the simple-shear secondary flow (Lighthill 
1957 a). 

The work of this section gives a check that fluid is truly emerging from 
the source at the rate m units of volume per unit time, as well as showing up 
the character of the simple-shear secondary flow solution as a valid second 
approximation in the neighbourhood of the source. 

6. EVALUATION OF go FOR SMALL k 
By a process inverse to that of $5, the behaviour of v for large r can be 

A uniformly valid first approximation to the solution vl(y, k) for small K 
deduced from that of vo for small k, which is obtained as follows. 

is 

To see this, note that when y is large V(y)-+ V( m), so (60) tends to r k u  
as it should, but when y is not large r k y  = 1 (for small k), and so (60) is 
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approximately proportional to V ( y ) ,  which in turn approximately satisfies (26) 
for small k.  These facts suggest the transformation 

which on substitution in (26) gives the equation 

"( Y@w 2) = kY'&JkuU1, (62) 
dY 

where for shortness we have written V2(y)  as Y(y) .  From (62) and the 
condition u1 +- 1 as y 3 co we obtain the integral equation 

(63) ul(y)  = 1 + k Jl dq J * Y'(Z)e2k(g-z)ul(l) dZ, 
P 

whence successive approximations to u1 for small k may be found, the first 
being u1 = 1 + O(k), the second 

'( - ' ( q )  dq + O(k2), (64) , Y ( q )  
u l =  l + k [  

and the third 

Similarly, we put V - - k U  V ( Y )  
2 - V ( -  u2, 

and find that 

Since also 

and 
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where on collecting terms it was found that all those involving y explicitly 
disappear, which is a check on the result. 

Now, by (46) and (66), 

V(o) {u;(o, k) + ku,(O, k)} A = 41T2W(k) v(-) 
m 

- - 

and similarly 

results which with equation (70) give non-zero limits for A and €3 as k + 0 
and give also their derivatives with respect to k at k = 0. 

By (43), (61), (65), (70) and (71), for y > 0, 

mV(y)e-”y Y( - a) 
47r2V(0) Y( a) + Y( - a) vo = 

.and similarly for y < 0 

mV(y)eky Y( a) 
4n2V(0) Y( co) + Y( - co) vo = - 

Now, equations (73) and (74) are to be used differently in different 
regions. For large lyl, they are best used as they stand, or at most after 
such simplification as is gained from replacing V(y )  by V( co) or V( - co), 
as the case may be, and suppressing the first integral inside each square 
bracket. However, for values of IyJ which are not large, it is permissible, 
and valuable, to expand the e k l Y r  factor outside the bracket in each 
equation and take it inside. When this is done, both (73) and (74) can 
.be rearranged into a common form in which the coefficient of k is seen 
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t o  be a continuously differentiable function of y even at y = 0. This form 
for IyI not large is 

dq +O(k2)  . (75) > I  -I - w  Y ( -  ..>Y(P) 

0 Y2( - co) - Yyq) 

The term independent of k in (75) is still discontinuous at y = 0, but this 
will be found to produce no discontinuity in v itself, which is influenced 
only by the term proportional to k .  

7. THEORY FOR LARGE Y 

ZJ = 27r 1 v,(y, k)KJ,(ks) dk (25 bis) 

for large r = 2/(y2 + 9) can be deduced from the equations (73), (74) and (75) 
which give the behaviour of v,,(y, k )  for small k. 

The case when Iy( is itself large is especially easy and may as well be 
treated first. For large positive y, (73) shows that 

We now show that the properties of 
m 

0 

as k -+ 0, where V(C0) 2vy- co) 
m1 = v(0) V2( 00) + VZ( - co) m, (77) 

and 

The ' Bore1 ' theory of integrals with exponential factors whose exponent 
consists of the variable of integration multiplied by a large parameter 
(here y) tells us that as y -+ co 

a 
m, e - k V ( l -  kc,)J,(ks) dk = - (m,  5 + ml 

where (31) has been used. The behaviour of w follows at once from (15) 
with the lower .limit replaced by + co, in which V can be regarded as 
constant on both sides, giving 

F.M. I 
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The equation of continuity then gives a similar result for u, and the three 
results may be written 

Equation (81) shows that, for large positive y, the effect of the source 
of strength m at the origin, in the midst of the sheared flow, is the same 
as if a source of different strength m,, and a doublet of strength mlcl with 
its axis in the y-direction, were present at the origin, but immersed in a 
uniform flow with velocity V( co). (These are the two leading terms in 
the expansion of the irrotational disturbance above the shear layer in terms 
of singularities at the origin.) 

Alternatively, we can say that the effect is the same as if a simple source 
of strength nz, were present, not at the origin, but at the displaced position 
(0, -c,, 0). 

Similarly, for large negative y, 

where V ( -  m2 = - 
V(0) 

and 

% ) - c  -grad( a - 5) 
4.rrr 2ay 4nr ) 

2 V2( co) 
V2( co) + VZ( - co) m, 

Thus, for large negativey, the disturbance is that which would be produced 
in a uniform flow by a source of yet different strength m2 at the origin, and 
a doublet of strength m2 c2 with its axis in the negative y-direction. Again, 
it can if preferred be regarded as equivalent to a source of strength m2 at 
the displaced position (0, + c,, 0). 

The strengths m, and m2 of the equivalent sources can alternatively be 
deduced by an image approach due to Mr M. B. Glauert. T o  obtain the 
asymptotic disturbance at large distances, we replace the shear layer by a 
concentrated vortex sheet. Now, suppose first that the source of strength m 
is ' above ' the vortex sheet, in the stream with velocity V( co). By applying 
the condition of continuous pressure and flow direction across the vortex 
sheet, it may be shown that if squares of disturbances are neglected the flow 
in the upper region is equivalent to that due to the original source of strength 
m and a source of strength mi (i for image) placed at its mirror-image in the 
vortex sheet; further, the flow in the lower region is that due to a source 
of different strength mt ( t  for transmitted) at the position of the original 
source. Here, 

V2( - 00) - V2( co) 2V( co)V( - 00) 
na- - V2(-co)+V2(co)m, - m. (85)  - V2( co) + VZ( - 00) 

When the original source approaches close to the vortex sheet it almost 
coincides with its image, so effectively in the upper region we have a source 
of strength m+mi, and in the lower region one of strength m,. Finally, 
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when the source is in the shear layer itself, at y = 0, the fluid produced by 
it fills a cylinder (stretching back from the source) of cross-sectional area. 
m/V(O);  this measures how much the rest of the flow is pushed out. Its 
effect is the same as if a source of strength mV( co)/V(O) were present just 
above the shear layer where the velocity is V( a). Therefore, the effective 
source strengths m, and m2 in the regions above and below the shear layer 
respectively should be 

which agree with (77) and (83). 
The effective displacements c1 and c2 of the source (equations (78)' 

and (84)) can probably not be calculated by such a method, as they are of the 
order of the thickness of the shear layer itself. 

The limiting case when V( - co)/V( co) -+ 0 is of interest; then both 
m, and m2 tend to 0. This is connected with the fact that mi -+ - m  
(the image of a source in a 'free streamline' separating a flow from a 
dead-air region being an equal sink), so that the source and its image 
cancel. They leave as the leading term in the disturbance in the upper 
region of uniform flow, a doublet whose strength 

The case V(y)  = R A Y  studied in $ 3 may be compared with this, since 
that distribution has in a sense V( - m)/V( co) = 0. But for large r (except 
where y and x are not large and x is positive) the disturbance in that case 
was found to fall off like e-", so that not only the effective source but also 
the effective dipole and higher multipole strengths are zero ; possibly the 
V( 00) in the denominator in (87) might have led one to expect this. 

Note that the net volume flow through the part of the surface of a large 
sphere, with centre at the origin, which lies outside the shear layer, is 

This differs from m, being less than m for a mixing region and greater for 
a wake. The balance is made up by flow across the part of the surface of 
the sphere immediately downstream of the source, where streamlines have 
been displaced. In  a mixing region, for example, the displacement is 
towards the region of lower velocities, and so the velocity at any fixed point 
in space is increased. This point will be returned to in $8. 

We begin now to investigate the flow for large r within the shear layer, 
that is, where I y (  is not large and therefore equation (75) holds. This work 
depends on the result that 

+... (89) 
F(0) 3 F"(0) 3.5 FV(0) 

Jrn F(lt)kJ,,(KF) dlt - - - ---- 
0 s3 + 2 s5 2.4 s7 

ass + m, if F(k) is a bounded analytic function of k for 0 < k < m. The 
author has been unable to find a clear-cut reference for this result, though 

I 2  
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it must presumably be well-known to people who frequently use the Hankel 
transform. It can be approached either by real- or complex-variable methods, 
the latter being simpler, though they assume rather more. 

If, in fact, F(k) is regular in a wedge largkl < a, then we write 

KO( - iks) - Ko(iks) 
ni 

Jo(ks) = 

(by Watson 1944, $3.7 (8) and § 3.62 (5)) ,  and divide the integral (89) into 
two parts, shifting the path of integration to argk = + a  for the part 
involving KO( -iks) and to argk = - a for the part involving Ko(iks). 
The integral becomes 

me-ia 

1 Jrneia F(k)kKo( - iks) dk - -. 1 
ni 7rt 0 

F(k)kKo(iks) dk 

F(it)itK,(ts) dt + ; F(- i t ) (  - i t )Ko(ts)  dt. (91) 
mei(u- ='j 

T o  

Since Ko(ts) falls off exponentially along each path in (91), the integrals 
may be asymptotically expanded, by a method directly analogous to the 
' Bore1 ' method used earlier in this section, as 

/ 

tm+lK0(ts) d t ] .  (92) 
J o  

T h e  contour integrals in (92) are clearly identical (and their values are 
simple combinations of factorials; see Watson 1944, 0 13.21 (8)); hence 
the terms with n even in the sum vanish, and the rest take the form (89). 

We wish to apply (89) to the case F(k)  = wo(y,k), so the question of 
the analyticity as functions of k of the expressions (43) for wo arises. The 
analycitity of w,(y, k) and w2(y, k) and their derivatives with respect to y for 
W { k }  > 0 is easily proved by Picard's method from the integral equation (49). 
Hence wo will be analytic provided that W(k) is non-zero. But the proof 
based on (48) that this is so can easily be extended to complex k with non- 
negative real part; in fact, if W(k) vanished, so that a continuously 
differentiable solution of (26) tending to zero as y + & 00 existed, then the 
integral (48) would still be zero if k2 were replaced by its real part and all 
other squares replaced by squares of moduli, and the conclusion that wo 
is identically zero would follow as before provided that W{k2}  2 0. Hence 
we may take a = 2- in the above discussion. 
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Equation (89), whose applicability to the case F(K) = a,,(y, K) has thus 
been established, now gives with (25) and (75) that 

1 
Y (  m) + Y( - 00) 

as s = + 00 for values of y which are not large. 
It is, perhaps, tiresome that the expression for v when Y is large should 

take three different forms (79), (82) and (93), according as y is large and 
positive, large and negative, or not large at all, and it is natural to ask 
whether they can all be replaced by a single, uniformly valid asymptotic 
form. By careful inspection of (79) 
and (93) one can show that both are included in the more general expression 

This does .not seem to be possible. 

(94) 
which therefore is valid both when y is large and positive and when IyI is 
not large ; but for large negative y (94) tends to 

whereas by (82) there should be an additional term 3m2c,y2/4nr6 for 
large negative y. 

However, such an expression as (94) is just what one needs to integrate 
(15) (with lower limit + m) to obtain an expression for w when s but not IyI 
is large. This gives simply 

= +o($ 2Y( m ) Y (  - O0) 

= V(y)V(O)(Y( m) + Y(  - a)} 4ns3 

whence, by (93) and the equation of continuity, 

mx mV'(y) Y ( m ) Y ( - c o )  --- 2Y(  m)Y(  - m) 
V(y)V(O){Y( m) + Y( - m)} 4ns3 ZnV(0) Y( a) + Y( - 00) u =  

{ jm y2(m) -y2 (q )dq-  
0 Y(P) Y ( m ) +  Y ( -  m) 0 Y(m)Y(P.) 

The leading terms of (96) and (97) show how the effective source strength 
varies incersely as the undisturbed flow velocity V ( y )  within the shear 
layer, tending to m, (see (77)) as y --z + co and to m2 (see (83 ) )  as y -+ - 03. 

This is connected with the fact that the pressure is constant across the 
shear layer far from the source, and that the pressure varies like -pV(y)w 
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along any streamline. The additional term in u, not inversely proportional 
to V(y) ,  is due to the displacement of the streamlines. 

8. THEORY FOR SHEAR LAYERS WITH SMALL TOTAL VARIATION OF VELOCITY 

In  5 4 to 3 7 the theory has been developed for a general shear layer, and 
asymptotic expressions for the velocity field found, both as r --f 0 (in the 
form of terms of orders r2 and r1 plus an error of order l), and as r + 00 

(in the form of terms of order r2 and r3 plus an error of order r*). 
However, the detailed characteristics of the join between these solutions 
remain unknown, and it was to give some understanding of these that the 
solution to be described in this section was sought. This solution is valid 
for all values of x, y and x, but only for a restricted class of shear layers, 
namely those within which the total variation of the undisturbed velocity V(y)  
is small compared with V ( y )  itself. If the minimum value of V(y)  is (1 - E) 

times the maximum, we seek an approximate solution by consistently 
neglecting 9. 

As before, we begin by obtaining vl(y,k).  The integral equation (49) 
shows that, if the first power of E be neglected, v1 is simply e-kv. This 
first approximation is valid uniformly, even for small k, since the fraction 
involving k within the integral is always less than (x - y )  ; and indeed the 
solution (60), valid in the limit k -+ 0, differs from e-ku only by a term of 
order E. 

Applying equation (49) again, we now see that 

Equation (98) is similar to the earlier approximation (51), except that the 
exponential factor cannot now be suppressed because k is not being 
assumed large. However, the V(q) in the denominator can be replaced 
by a mean value V,  (say, half the sum of the maximum and minimum of 
V ( y ) )  with an error O(e2). 

Similarly, 

and also 

whence it follows easily that the Wronskian v1v~-v2v;  is simply 

W(k) = 2k+ v"(q) dp + O ( E 2 )  = 212 + O(E2). 
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Next, by (46), 

Equation (103) has been written in the form which gives clearest 
confirmation of the result proved in $ 5 ,  that v differs from the sum of the 
primary flow and the simple-shear secondary flow by an expression bounded 
as t -+ 0. & it gives the Hankel transform (25) ,  after the substitution 
12q-yI = 21 in the last integral, and use of the result (31), as 

m 
X 

my V(O)+ V(y) m v = - -  
4nr3 2 v m  47ir 8nV,, 

v"(&Y + '1 - v"(hY - '1 dl. (104) 
2/(412 + s2) 

As r -+ 0, this satisfies 

(105) 

my V ( 0 )  m v"(l) - v"( - I )  
1 4nr3 Vm 4n-r {?:: -- c r  + 5 16nVm jOw 

The terms in curly brackets in (105) may be called the 'tertiary flow' 
contribution to v ; they are the limit as r + 0 of what remains when the 
primary-flow and the simple-shear secondary-flow terms are taken away. 
The presence of the integral shows that this tertiary flow depends on the 
value of V"(y) not only at the source itself but throughout the shear layer. 

Expression (104) is not, however, the most suitable form of w for showing 
its behaviour away from the source. For this, we first integrate (103) by 
parts, substitute 2p = 1 and only then take its Hankel transform, namely 

(Alternatively, on integrating (104) by parts and changing the variable of 
integration we get (106).) 

Equation (106) has a simple and valuable geometrical interpretation. 
It says that the y-component of disturbance velocity w is that due to the 
source of strength m at the origin, together with a line distribution of sources 
along certain stretches of the y-axis ; to be precise, the stretches from 2y 

to 00 and from - co to 0 when y is positive, or ( since ,a", - l:, 3s the same 

as - the stretches from 0 to 00 and from - a3 to 2y when y is 
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negative. 
unit length. 

The source strength at the point (0,1,0) is V'(+l)sgn l/2Vm per 

The values of w and u can be interpreted in the same way. Thus, by (15), 

if O(e2) be neglected, and when the integration is carried out we find that 

which is the x-velocity due to the distribution of sources described above. 
Also, on integrating 

(109) 
au av aw 
- =  ax -6% 

from - co to x to obtain u, we clearly get the x-velocity due to the same 
distribution of sources, except from one extra term in av/ay resulting from 
the dependence on y of one of the limits of integration in (106). This 
additional term on the right of (109) makes a contribution 

to u, whence (by evaluating this integral) 

m W Y )  Y(1 + xlr) v, y 2 + x 2  - (111) 

Thus, apart from the last term in (lll), the complete system of 
disturbance velocities can be identified with the flow due to the source 
distribution along the y-axis described above. 

This does not mean that it is irrotational. The velocity at a point (x, y, z)  
is that due, not to a fixed system of sources, but to one which itself varies 
with y .  This gives additional terms in the y-derivatives of u and w which 
(together with the y- and x-derivatives of the extra term in u) prevent any 
component of the vorticity from vanishing. An actual expression for the 
vorticity is obtained later (equation (117), in which by (120) + must be 
taken as - m/4rrVm). 

Mr M. B. Glauert has shown the author an ingenious derivation of the 
equivalent source distribution from his image theory mentioned in 5 7. 
He regards the shear layer as made up of a very large number of elementary 
vortex sheets. The velocity at a point ( x , y , z )  due to the source at the 
origin is then represented as the velocity field of the original source itself, 
together with its images in all vortex sheets which do not pass between 
the origin and (x,y,z). This is permissible if O(E%) be neglected because 
(i) the 'transmitted' source strength mt, by which the original source 
strength m needs to be replaced as a result of vortex sheets between the 
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origin and ( x , y , z ) ,  is equal to m+O(c2) (as (85) shows) because the 
difference of velocities across all these vortex sheets is O(E), and (ii) the 
images of the image sources will have strength O(c2). 

It follows that there will be image sources from 2y to co and from - co 
to 0 if y > 0, and from - co to 2y and from 0 to co if y < 0. Further, 
the source strength between (0, 1,O) and (0, l +  dl, 0) due to the vortex 
sheet lying between (0, 41, 0) and (0, +l + &dl, 0), across which the velocity 
change is V'(&l)&dl, is seen from (85) to be (V'(&Z)sgn1/2Vm} dl. The 
source distribution is therefore exactly that obtained analytically. 

T o  explain the additional term in ( l l l ) ,  note that Glauert's vortex 
sheets are displaced by the source flow. T o  a first approximation (neglecting 
O(E)) the y-component of displacement is 

(112), 

The disturbance velocity u will therefore have an additional component 
approximately 

as in ( 1  1 l ) ,  with error O(e2). 
The equivalent source distributions appropriate to a point with y > 0 

and to one with y < 0 are illustrated for a mixing-region flow in figure 1. 
A general picture of the disturbance flows can be readily got from this figure. 
If y were actually greater than the greatest value it takes in the shear layer,. 
the upper part of the equivalent source distribution would disappear 
altogether. In  this region, therefore, the flow is the irrotational flow due 
to a fixed system of sources. Their total strength is easily verified to be m,, 
and their total dipole moment mlcl (see S7), to within an error O(e2). 
Similar results hold for values of y less than the least value it takes in the 
shear layer. Within the shear layers, the sources and sinks are so arranged 
as to produce a pronounced ' downwash ' in the case of a mixing region, 
but this is somewhat mitigated in the case of a wake. 

Far downstream of the source, where x is large and positive but y and z 
are not large, the disturbance velocities are dominated by the last term in ( 1  1 1 )  
(interpreted in (1 13)  as a displacement term) ; thus, 

( 1  14). 

We may use (1 14) to check conservation of volume flow. The net volume 
flow, across that part of a large sphere (with centre the origin) which 
intersects the portion of shear layer downstream of the source where (114) 
holds, is 
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where (88) has been used with O(e2) neglected. Together with the volume 
flow $ml across the part of the sphere above the shear layer, and +.t2 across 
the part below, this makes up exactly the rate m at which fluid is being 
produced at the source. 

We here have exemplified from the case of small velocity spread how 
displacement of streamlines in the shear layer can remedy deficiencies 
between the rate of fluid output at the source and the rate of escape to regions 
far from the shear layer. In  layers with large velocity spread the nature of 
the displacement is greatly altered (it includes secondary downwash and 
the like as well as the primary flow due to the source) but it must still produce 
this same effect, Of course, if terms of the order of the square of the source 
strength were included, the secondary trailing vorticity would be present, 
and then the streamlines far downstream would spiral about their mean 
positions ; however, the conclusion would e unaltered. ?- 

1 

_... 

Figure 1 .  The equivalent source distribution, representing the effect that a weak 
source in a mixing region with small velocity spread makes at the point marked 
with a circle (which has y > 0 for the left-hand of the two distributions shown, 
and y < 0 for the right-hand one). The heavy plus sign represents the 
original source in each case, and the light plusses and minuses additional 
sources and sinks respectively. These can be regarded (Glauert) as images 
of the original source in the component vortex sheets of the shear layer. 

9. RELATION BETWEEN THE PRESENT SOLUTION AND THE EXACT-PROFILE 

In  the present paper the disturbance due to a weak source in a shear 
layer has been investigated by neglecting the square of the disturbance 
<due to the presence of the source, no other approximation being made 

SECONDARY FLOW 



Steady three-dimensional disturbances to a parallel shear $ow 139 

in Q 2 to Q 7. In  Q 8 the additional approximation of neglecting the square 
of E (the relative spread of velocity in the shear layer) was made. 

It is interesting to compare the results of the double approximation 
with those of another procedure, in which first the effect of a small non- 
uniformity in the oncoming stream on a basic irrotational flow (such as 
that due to the source) is considered by neglecting squares of E ,  and the 
result is then further approximated by assuming small disturbances. This 
procedure was expounded briefly for the case of a general parallel flow in 
Lighthill (1956, p. 39), although the rest of that paper was devoted to the 
case of a uniformly sheared upstream flow. 

The term ' secondary flow ' may appropriately be used to describe any 
flow field computed by taking an irrotational flow with uniform upstream 
velocity as the first approximation (or primary flow), and going to a second 
approximation by allowing a small spread in the upstream velocity but 
neglecting its square. The secondary flow may be called a simple-shear 
secondary flow if the upstream flow is taken as uniformly sheared, and an 
exact-profile secondary flow if the true upstream velocity profile is used. 

As shown in Lighthill (1956), secondary flows can be calculated by 
finding how the vortex lines of the upstream parallel flow become stretched 
and rotated by the primary flow. The secondary vorticity field having been 
found, some fairly arduous integrations are needed in general to determine 
the secondary velocities ; but such integrations have been carried out for 
the simple-shear secondary flow about a sphere in Lighthill (1957 b). 

The secondary vorticity field for any upstream velocity profile can be 
expressed in terms of the ' drift function ' t for the primary flow. This 
function is such that planes of fluid initially at right angles to the stream 
are distorted by the primary flow into shapesgivenbyequationst = constant ; 
t represents the time at which a given fluid particle reaches a point, measured 
from when it would have reached x = 0 had the uniform upstream flow 
continued undisturbed. By considering how this distortion of planes of 
fluids affects the vortex lines of the secondary flow, which initially lie in 
such planes, one obtains the fairly simple equations (30) of Lighthill (1956) 
for the exact-profile secondary vorticity field. 

These can be further simplified in the region away from the source of 
disturbance, where disturbances are themselves small, since in this region 
the drift function takes the simple form 

(116) 
x - 4  t N -  

U '  
where + is a ' disturbance potential ', defined so that the full velocity potential 
of the primary flow is U(x++) .  The form of the secondary vorticity 
distribution in this region is easily deduced (Lighthill 1956, (32)) in terms 
.of 4 ; in the special case when the upstream velocity is V ( y )  (independent 
of z) it becomes 



140 M .  J.  Lighthill 

The disturbance velocity field associated with this disturbance vorticity 
field is 

where v2* = V Y W ,  (119) 
since the curl of (118) is (117) and its divergence vanishes (as was secured 
by subtracting grad#). In  some cases it is necessary to add on to (118) 
an irrotational part representing the far field of the 'secondary trailing 
vorticity ' (horseshoe vortices wrapped round the disturbance) ; this part 
is given in equation (85) of Lighthill (1957a). 

When the disturbance is that due to a source, we may take 

The asymptotic form (118) of the secondary flow for large r then needs. 
no addition due to the far field of the second trailing vorticity, because the 
latter is of smaller order, O ( r 2 ) ,  as Y -+ 03. Hence in particular 

as r + 03. 

Now, the solution (121) for the small-disturbance form of the exact- 
profile secondary flow, which is its asymptotic form far from the source,, 
can be identified with the solution of 8 8, where the small disturbances due 
to a source are approximated for an upstream flow with small velocity spread. 
For, if O(e2) be neglected, equation (19) (except at the origin) becomes. 

(122) 

and it is a simple matter to verify that the solution (106) does indeed satisfy 
(122). Hence, if we were to write v in the form (121), where + is given 
by (120), then # must satisfy 

a+ ( 123)g 
a 
- (P*) = V'{'(y)+ + 2Y(y)  - - v2v 
aY aY 

and integrating with respect to y we obtain equation (1 19) for #. Similarly,, 
the identity of w and u in the two solutions may be checked. 

However, though this shows that the solution of $ 8  could be obtained 
by the alternative method leading to (118) and (119), the method adopted 
in this paper seems preferable, because it gives a lot of information about 
the solution to the more general problem in which c2 is not neglected, and 
because the direct solution of the Poisson equation (119) would in any case 
involve the same Fourier and other analysis which had to be introduced 
above. 
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10. RELATION TO THEORIES OF THE DISPLACEMENT OF THE STAGNATION 

One interesting property of shear flow is that when a Pitot tube is placed 
in such a flow with the open end of the tube pointing upstream the pressure 
measured in the tube is the stagnation pressure not on the streamline 
approaching the tube directly along its axis but on one displaced by a 
measurable amount in the direction of higher velocities (Young & Maas 
1936). This may be regarded as evidence of the presence of ' downwash' 
(flow at right angles to the undisturbed streamlines, in the direction of 
decreasing velocity) on the streamlines approaching the tube along its axis, 
and so it becomes a problem to compute this downwash from secondary-flow 
or other theories and calculate the displacement from it. This is the subject 
of a companion paper (Lighthill 1957 b), but there is one aspect of it which 
must be mentioned here, as it can be properly treated only by the present 
theory. This aspect is the behaviour of the downwash far ahead of the tube. 

The ' downwash function ' D(s) is the value of ( - v )  on the axis of the 
tube (y = x = 0) at x = -s, and is expected to be positive if V ( 0 )  > 0. 
The most important region of downwash is near the tube; here D(s) is 
best found from the simple-shear secondary flow, or from a higher approxi- 
mation in a sequence starting from this. But the downwash so calculated 
falls off (see (57)) only as 

STREAMLINE 

V ( 0 )  m 
D(s) -- - 

V(0) 4ns 

at points far enough ahead of the tube both for the disturbances to be small 
and for the tube to be representable by a source of strength 

where d, is its external diameter. But the displacement calculated from (125) 
would be logarithmically infinite, since (125) is not integrable up to s = 00. 
If tertiary-flow terms were included, they would be even greater for large s, 
and still worse infinities would arise in the displacement. 

The difficulty can be resolved by using the complete solution of this 
paper in the region where s is large enough for the disturbance to be small 
and for the tube to be representable by a source of strength (126). In  this 
region the downwash falls off only initially like (125) (see (57)), and later 
like r3 ; more precisely, by (93), we have 

m = trrd,2 V(O), ( 126) 

y ( m ) y ( - m )  { Jrn Y 2 ( m ) - y 2 ( p ) d p -  
D(s) - 2 2  (Y( m) + Y( - m)}2 0 Y( .o)Y(q) 

as s --f 00. The difficulty of D(s) not being integrable up to s = 03 then 
disappears. 

The problem is thus treated by means of two overlapping solutions. 
For small to moderate r ,  the simple-shear secondary-flow theory is used ; 
for moderate to large I the exact-profile small-disturbance theory is used. 
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Expression (125) is valid in the overlap range of 'moderate' r ;  for it 
represents the asymptotic behaviour of the simple-shear secondary-flow 
theory as r -+ m and also that of the exact-profile small-disturbance theory 
as r + 0. 

To apply this to the calculation of displacement, let so be a value of s 
in this overlap region. Then the displacement of the dividing streamline 
due to downwash D(s) for s < so is calculated from the simple-shear secondary 
flow. For s > so the disturbances are small, and the contribution to the 
displacement from downwash in this region is 

1 roo 

where D(s) is given by the theory of this paper. 
Now, we can write the contribution (128) as 

__ 1 1:: Vl(0) -!? ds, 
V(0) V(0) 4ns 

provided that 
m V'(0) m 

logs, = lim { I D(s) ds + - - 1% so}, (130) 
V ( 0 )  m -- 
V(0) 477 sC+m s8 V(0) 4n 

and in the limit on the right the downwash function D(s) is taken to be that 
given by the small-disturbance theory right down to so = 0. It is because 
this D(s) is asymptotic to (125) as s + 0 that no substantial difference is made 
by allowing so to become smaller and vanish in (130), since so has already 
been assumed sufficiently small for the approximation (125) to be good. 

We call s,, defined by (130), the upstream cut-off of the simple-shear 
secondary flow. The displacement for s > so, as (129) shows, is equal to 
what it would be if the downwash were equal to the simple-shear secondary- 
flow value (125) up to s = s, and zero for s > $,-in other words, if the 
secondary flow were cut off at s = s,. 

A precise expression for the cut-off value s, can be obtained if the theory 
of 8 8 for the case of a small velocity spread be used. Then, by (104), 

dl. (131) 
V ( 0 )  m 

V"(1) - V"( - 1) 
= lim {%) :log- :: + - s", I, v, X 6,+W 

V ( 0 )  m 1 V"(1)- V(-1) 
I - -1og- + - 

V(0) 4~ $0 8n "I 0 v, 
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whence, by (1 3 0), 

logs, = - jm { - V"(1) + V"( - 1))log 1 dl. (133)- 

Since the denominator 2V'(O) in (133) is the value of the integral if the 
log 1 in it be suppressed, we can say that logs, is the average value of log t 
in the shear layer, if the ' weight' used in averaging is - V"(1)sgn 1. This 
makes s, itself a ' geometric ' mean of 1 in the shearing layer. (Here, 1 means 
the difference in y-coordinate between a general point and the source.) 
Thus, s, is of the order of the layer width, as indeed is easy to see 
geometrically from the ' equivalent source distribution ' described in 5 8. 
In  more general problems it is reasonable to suppose that s, is still of the 
order of the layer width. 

We may consider also the implications of the present theory for problems 
like the displacement effect of a sphere, as treated by Hall (1956) and by 
Lighthill (1957 b) on the assumption that the inviscid flow is a good enough 
approximation (in other words, that separation and wake flow do not 
influence the displacement). The upstream effect of the sphere is that 
of a doublet of strength 

m = 2.rra3V(0), (134) 

if the sphere has radius a and centre the origin. With this value of m, 
the flow in the region of small disturbances (due to the doublet) is given 
simply by taking the x-derivative of the velocity field of this paper. 

The upstream cut-off of the simple-shear secondary flow is not crucial 
in this case, since the simple-shear secondary downwash is itself integrable 
up to s = m. However, the cut-off reduces the displacement below that 
obtained by this integration, and the reduction can be calculated, as follows. 

If D,(s) is the downwash function due to the source studied hitherto 
in this paper, and Dd(s) = -D:(s) is that due to the doublet, then the 
displacement for s > so is 

2V(O) 0 

where (105) has been used to approximate to D,(so). Now, the first term 
in curly brackets is the simple-shear secondary-flow value, and so the 
difference, between the true displacement and that given by assuming that 
the simple-shear secondary flow persists to infinity, is given approximately 
(using the value (134) for m) by 

dl. 1 
This is presumably negative when V'(0) > 0, since the numerator of the 
integrand is then negative on the average. Thus the correction (136) due- 
to the cut-off is a reduction, as expected. 
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Actually, it was shown in Lighthill (1957 a) that as well as the doublet 
,of strength (134) the upstream influence of the sphere includes also a rather 
.smaller contribution due to the ' secondary trailing vorticity '. This is 
.equivalent to the effect of a line of doublets with axis the y-axis stretched 
all along the positive x-axis. However, it may be shown that the displacement 
resulting from this line of doublets is estimated correctly even if the cut-off 
studied above is neglected, and hence the validity of the correction (136) 
remains unaffected. For the practical significance of this correction, see 
Lighthill (1957 b). 
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